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Abstract  

Entropy measurements are an accessible tool to perform irregularity and uncertainty measurements 

present in time series. Particularly in the area of signal processing, Multiscale Permutation Entropy (MPE) is 

presented as a characterization methodology capable of measuring randomness and non-linear dynamics 

present in non-stationary signals, such as mechanical vibrations. In this article, we present a robust 

methodology based on MPE for detection of Internal Combustion Engine (ICE) states. The MPE is combined 

with Principal Component Analysis (PCA) as a technique for visualization and feature selection and K-

Nearest Neighbors (KNN) as a supervised classifier. The proposed methodology is validated by comparing 

accuracy and computation time with others presented in the literature. The results allow to appreciate a high 

effectiveness in the detection of failures in bearings (experiment 1) and ICE states (experiment 2) with a low 

computational consumption. 
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1. INTRODUCTION 

 

Nowadays, most of the transport systems are 

based on internal combustion engine as their 

primary power source, thanks to the relatively low 

cost, high performance, and capability to operate on 

diverse renewable fuels. Reciprocating internal 

combustion engine works under the influence of 

burning pressure and inertial loads; its performance, 

among many factors, is affected by the demands of 

the piston-crank mechanism, piston slap motion 

(significantly dependent upon the clearance 

between the piston and the cylinder wall), inputs 

from the timing gear system, inputs from engine 

auxiliaries (that is alternator, steering system pump, 

etc.), inputs from the drive transmission system.  

From the economic standpoint it is necessary for 

public transport to be reliable, operationally 

available, and economically maintained. 

Monitoring, detection, and diagnosis of faults of 

combustion engines is essential to secure the 

correct operation and reliability of the road 

transport means; it also allows to reduce 

breakdowns and dawn-time, increase safety and 

profitability. 

Engine vibration measurements are non-

intrusive techniques suitable for engine diagnostics, 

yet the mechanism of vibration in them can be 

correlated with the changes in engine operation 

behaviour and faults. Different methodologies have 

been developed for combustion engine fault 

detection and diagnosis of states in its main 

components [1]. Generally, these diagnoses are 

made from the capture and processing of vibration 

signals since they contain relevant information 

about the state of the machine [2]. However, these 

signals have many non-stationary and non-linear 

characteristics since their capture inevitably takes 

place with friction and impacts. To overcome this 

problem, a series of techniques have been 

developed for processing and classifying these 

signals. A widely used approach is based on the 

analysis of temporal and spectral characteristics of 

vibration signals [3] [4]. However, analysis in time, 

frequency and time-frequency domains are 

seriously affected by the signal length and sampling 

frequency of the capture [5]. To solve this problem 

another approach has been presented in recent 

years, which is based on entropy of different 

natures, such as Simple Entropy (ApEn) [6], 

Approximate Entropy (SampEn) [7], Multiscale 

Entropy (MSE) [8], Permutation Entropy (PE) [9] 

and Multiscale Permutation Entropy (MPE) [10]. 

All the above mentioned have been used 

successfully for the characterization of signals of 

different nature. For instance, in [6] the ApEn is 

used for diagnosis and clinical monitoring in 

physiology. In [11] PE is used for the classification 

of patients from EEG signals.  

Finally, in [1] and [8] is used the MPE and MSE 

for the identification and diagnosis of faults in 

bearing systems based on vibration signals [12]. It 

should be noted that the MPE is an evolution of the 

MSE and the PE since it gives a much more 

complete measure of the nonlinear dynamic 

parameters of a system. MPE includes a 

combination of different scales and time delays, 

which identifies particularities that are not 
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perceptible within other entropies [10]. All the 

previous methods of characterization allow to 

obtain a great quantity of information of the system 

that is analysing. When classifying, many of these 

characteristics can be redundant or irrelevant, 

which makes it more difficult to detect significant 

patterns besides increasing computing time. To 

solve this problem, feature selection techniques can 

be implemented, improving the quality and 

efficiency of the model. In the bearing fault 

diagnosis application, Variance based on Relevance 

Analysis (VRA) [1], Laplacian Score (LS) [13] and 

Relief (REL) [5] are normally used. After the 

selection of features, a classification process is 

performed with machine learning algorithms such 

as Multiple Vector Support Machines (SVMM) [1], 

[14], [15] and [16], Chains Hidden Markov (HMM) 

[17] and Neural Networks (ANN) [18], [19] and 

[20]. However, these classifiers have a high degree 

of complexity, computation time and initial 

parameters that must be optimized. Few works have 

attempted to exploit the potential of less complex 

conventional classifiers, such as K-Nearest 

Neighbors (KNN) [21], [22], Decision Trees 

(TREE) 23] or Naive Bayes (BAYES) [22].  

This paper proposes a methodology for the 

detection of ICE states from mechanical vibrations 

based on characteristics of the MPE. To make it 

more efficient and effective, it is combined with the 

feature selection technique VRA and the supervised 

classifier KNN: The verification of the advantage 

of the chosen parameters is done by comparison 

with different ones used in the state of the art. 

The article is organized as follows: in section 2.1 it 

is presented the mathematical formulation of the 

MPE; in section 2.2 it is detailed the feature 

selection technique VRA, while the section 2.3 is 

devoted to the classifier KNN. A novel 

methodology for the diagnosis of bearing failures 

based on MPE and machine learning algorithms 

techniques are in section 3.1. Results are presented 

in section 3 and the conclusions drawn from this 

approach are given in section 4. 

  

2. SUPERVISED CLASSIFIER 

 

The proposed methodology combines a 

characterization method, a feature selection 

technique, and a supervised classifier as show in 

Figure 1. Each part of the methodology is described 

in the following sections. The proposed 

methodology begins with the characterization of 

vibration signals, then using an automatic classifier 

combined with a characteristic selection technique, 

the state of the system is estimated. 

 

2.1. Multiscale permutation methodology 

Multiscale Permutation Entropy (MPE) is used 

in this paper as a signal characterization method, 

since it is a measure that allows to detect dynamic 

changes of the time series. It is based on the 

comparison in neighbouring values without 

considering the size of the values and, therefore, 

has a calculation simple and fast [24]. The above, 

allows to position the MPE as a particularly useful 

and robust tool in the presence of dynamic noise 

[1]. In order to describe the MPE measure, it is 

important to review the entropy Shannon, described 

as follows: Considering a series of time  T
ttx

1=
in a 

space of representation of characteristics, where T 

is the length of the time series. The entropy 

Shannon is represented by: 
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Fig. 1. Methodology for vibration classification.  

Own elaboration 
 

Where xi ∈ R and p(xi) is the marginal 

probability. The time series can be represented with 

a delay of time and dimension given by: 
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Where i = 1, 2...T − (m−1)τ, m is the dimension 

and τ the delay. To perform the computation of 

MPE, the signal must be truncated in N =T−(m− 1)τ 

subvectors. Then, each subvector is calculated the 

Shannon Entropy mapped in a space of m! different 

symbols   !

1
, m

i
m
i =
 denoted as  like: 

( ) ( ) ( )


 


,

:

, ln,
,

m
i

i

m
i ppmH

m
i




−=   (3) 

Probability ( ) ,m
ip  it is calculated by: 

( )
( )
( )



 

=
=

Nj

m
jutypeu

j

m
jutypeum

i
X

X
p

i






,
)(:

,
)(:,

1

1
  (4) 

Where the judgment type denotes the map from 

pattern space to symbol space. Also, 1A(u) = 1 if u 

∈ and 1A(u) = 0 if u  A. The MPE can take values 

between the ranges [0, ln(m!)] and it is invariant 

under nonlinear monotonic transformations. The 
values of m and τ vary from 1 to 8 and the 
values, which are values used for calculating 
MSE [8] and PE [9]. In Figure 2 is plotted the 
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behaviour of the MPE, when are varying m and τ 
for a vibration signal. 

 

 
Fig. 2. MPE varying m and τ. Own elaboration 

 

When choosing the delay and dimension 

parameters, the nature of the signals must be 

considered. If the parameters are too small, the 

nonlinear dynamic of the characteristics from 

signals will not be analysed effectively. If the 

parameters are too large, useful information will be 

deleted in consequence, which will result in a 

wicked analysis. 

 

2.2. Variance based on relevance analysis 

It is based on the Principal Component Analysis 

(PCA) technique and it is used to describe a data set 

in terms of new uncorrelated variables 

("components"). The components are ordered by 

the amount of original variance they describe, so 

the technique is useful for reducing the 

dimensionality of a data set [13]. Its 

implementation begins with the assumption of a 

feature vector X = [x1, x2, ..., xp], where p is the 

length of the vector, µ is the mean of the vector and 

the covariance matrix of the data set is described in 

Eq (5).  

( )( ) T
xx

x

xxE  −−=     (5) 

For a symmetric matrix, such as the covariance 

matrix, it is possible to calculate an orthogonal 

basis given by its eigenvalues λj and eigenvectors. 

The new orthogonal base is created with the first 

eigenvector that points to the direction of the 

greatest variance of the data. In this way, you can 

select the first eigenvectors (m < p) and can it build 

the transformation matrix as: 

xAt T=   (6) 

Where y is the vector f projected characteristics 

in a new sub-space with a lower dimensionality. 

The projection is linear. 

 

2.3. K-Nearest Neighbors 

The method of the K-Nearest Neighbors is a 

supervised and non-parametric classification 

method that estimates the posteriori probability that 

an x element belongs to the class Cj from a set of 

information provided [25]. A point in space is 

assigned to the C class if this is the most frequent 

class among the K-nearest training examples, like is 

show in the Figure 3. Generally, the Euclidean 

distance is used. 

This classifier can be severely affected by the 

presence of noise or irrelevant characteristics, 

which is why it is necessary to perform a 

combination with different characteristics selection 

techniques. 

 

 
 

Fig. 3. Operation of a KNN classifier. Own elaboration 

 

3. RESULTS AND DISCUSSION 

 

This paper exposes a methodology to classify 

states of an internal combustion engine by vibration 

signals. The classification carried out through a 

cross validation of (k = 10) and repeated by 

changing the number of training characteristics. 

After the validation, the best results were chosen 

through the shortest distance to the ideal point 

[100%(Acc), 0(Std), 0(Ca)], where Acc is the 

accuracy, Std is the standard deviation of the 

accuracy of the cross validation and Ca is the 

number of characteristics. The above explained 

process applies to two different databases. 

 

3.1. Methodology for faults detection 

The proposed methodology is validated through 

two experiments with the methodology in the 

Figure 4. The first experiment is based on the 

identification of bearing failures from vibration. 

The second experiment is based on the 

classification of the states of an internal combustion 

engine from a vibration signal. 

 
Fig. 4. Methodology proposed for the 

detection faults. Own elaboration 
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Each signal is characterized with the MPE and 

then assigning it into train or test group. VRA 

technique is applied to the training group to obtain 

a ranking of relevance and it is applied to the test 

group. Then, with the reorganized training group, 

KNN is trained and the test group is evaluated. 

 

3.2. First experiment  

The first experiment is carried out by 

performance evaluation classifying bearing failure 

signals obtained from the Case Western Reserve 

[26]. In this data base, signals were collected for the 

normal bearings (Nor), faults in the internal train 

(IR1), external train (IR2) and ball (BE). Faults are 

also found in order of severity, 0.007 inches in 

diameter to 0.040 inches in diameter and at variable 

engine speeds of 1720 to 1797 RPM. Each 

experiment was repeated three times and the data 

was collected at 12 kHz for 5 seconds. Each signal 

was divided into 10 sub-signals to have more 

samples per class and imitating the experimental 

framework established in the literature [27]. A sub-

signal of each of the faults can be seen in the Figure 

5. 

The results are obtained with the KNN classifier 

combined with the VRA feature selection 

technique, as shown in Table 1. The quantity of 

characteristics used for the classification were 9 and 

10 for 4 and 10 classes, respectively. It should be 

noted that the results are obtained thanks to the 

characterization made with the MPE, which 

achieves a high level of separability of the classes 

that allows the classifiers to adapt and solve the 

proposed application.Finally, a summary of the best 

classifications can be seen in the Table 1, including 

the computation time. The methodology proposed 

with the classifier KNN and VRA, performs a high 

classification but with greater number of 

characteristics as shown by the behaviour of the 

accuracy in the Figure 6. However, the 

methodology is compensated by having a low 

computation time. 

 
Table 1. Characteristics of the best classifications 

Class Classifier Feature 

Selection 

Acc 

% 

No  

Features 

Time 

(s) 

4 KNN VRA 99.72 9 16.37 

10 KNN VRA 99.57 10 18.22 

 

Finally, Table 2 and summarizes the work done 

in the last years for bearing fault diagnosis. In Table 

2 is exposed the author, the number of classes, 

characterization and feature selection; and Table 3 

is exposed, the author, the classifier, the number of 

features, and the accuracy. The previous 

comparative study between the present work and 

those established in the literature for the diagnosis 

of bearings failures allows to appreciate the validity 

of the proposed methodology. It should be noted 

that, although all the results exceed 90%, this work 

exceeds them in accuracy although with a greater 

number of features. The above is compensated with 

the use of a classifier of low computational 

consumption. 

 
Fig. 5. Vibration signals for different states. 

Own elaboration. 
 

 
 

Fig. 6. Comparison of the accuracy for 4 and 

10 class. Own elaboration 
 

3.3. Second experiment 

To verify the practical applicability of the 

proposed Multiscale Permutation Entropy (MPE) as 

a characterization methodology for detection of 

Internal Combustion Engine (ICE) states, an 

experiment was conducted on an engine test bench.  

The experiment consists on the classification of 

the states of a single-cylinder air-cooled diesel ICE 

settled to operate under a set of operating points 

defined by three load states, three speed regimes 

and three different injector fuel pressure to simulate 

an artificial fault event on the engine. The engine is 

coupled to an eddy current dynamometer and is 

instrumented to measure the in-cylinder pressure 

along with the vibration signals in the engine block, 

as shown in Figure 7.  
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Table 2. Comparison of the best classification results. 
 

Author Number 

Classes 

Character. Feat. 

Sel. 

Classifier Number 

Features 

Acc.% 

Zhang et al.[14] 3 PE+EMD - SVM 12 97.75 

Yuwono et al.[17] 3 WPT - HMM 12 95.8 

Ben et al.[19] 7 TP+FR+EMD - ANN 10 93 

Zhu et al.[28] 10 HE+SE+MSE - SVM+PSO 9 97.75 

Han et al.[16] 14 SE+LDM - SVM - 100 

Zheng et al.[15] 7 EF - ANFIS 4 99.29 

Liu et al.[29] 4 TP-FR - WPT+SVM+PSO 81 97.5 

Tiwari et al.[2] 4 MPE - ANFC 16 02.15 

William et al.[20] 4 ZC - ANN 10 97.13 

Ocak et al.[30] 3 LPM - HMM 30 99.6 

Wei et al.[5] 6 FR+WPT Relief AP 18 96 

Shao et al.[31] 16 DAE+CAE LPP Softmax 19 96 

Zheng et al.[1] 6 GCMPE LS SVM+PSO 2 98.81 

Liang et al.[21] 4 TP+FR NMF KNN 3 92.86 

Muru et al.[18] 4 SSA EMD ANN 10 95.14 

This work 4 MPE VRA KNN 9 99.72 

This work 10 MPE VRA KNN 10 99.55 

       

 

 

 Fig. 7. Mounting for the acquisition of vibration 

signals. Own elaboration. 
 

The noise spectra obtained when the engine was 

in fired condition were used to follow engine events 

and faults. 

The different states are achieved by changing 

different ICE working conditions such as speed 

(1800 RPM, 2400 RPM, 3000 RPM), injector (18 

MPa, 20 MPa, 22 MPa) and load (High, Medium, 

Low). The vibration signals are captured by 

accelerometers positioned on the X and Y axis of 

the motor. The accelerometers are conditioned by 

the National Instruments DAQ cards and the 

MatLab development software. The signals have a 

duration of 10 seconds and 51 kHz of sampling 

frequency. For the classification task, the signals 

are segmented into segments of 80 ms (i.e. 4096 

samples per segment) and 90% of the segments 

were designated for training and 10% for test (a 10-

fold cross validation was used). The results of the 

classification with MPE, KNN and VRA can be 

seen in Figure 8. 

 

 
Fig. 8. Results for the classification of states of an 

ICE. Own elaboration. 

 

The proposed experimental methodology 

achieved a mean accuracy of 93.82% for the 

classification of different speed regimes. Table 3 

shows the confusion matrix for this classifier. 
 

Table 3. Confusion matrix for speed classifier 

  Classified 

  
1800 

RPM 

2400 

RPM 

3000 

RPM 

Labeled 

1800 

RPM 
254 9 5 

2400 

RPM 
11 252 7 

3000 

RPM 
6 7 259 

 

This characterization methodology makes it 

possible to classify the different speeds of an ICE 

with a high accuracy rate, without the performance 
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of the classifier being affected by changes in the 

other ICE operating regimes. 

The proposed experimental methodology also 

achieved a mean accuracy of 89.51% for the 

classification of different load regimes. Table 4 

shows the confusion matrix for this classifier. 

 
Table 4. Confusion matrix for load classifier 

  Classified 

  High Medium Low 

Labeled 

High 255 16 6 

Medium 23 243 12 

Low 8 20 227 
 

As can be seen in Table 4, MPE allows to 

extract discriminant characteristics that leads to a 

high accuracy rate in the classification of the ICE 

load. However, these results are lower than those 

obtained in the speed regimes classification since 

the different load regimes do not influence the 

engine vibrations to the same extent. 

In the last configuration of the second 

experiment, was achieved a mean accuracy of 

91.37% for the classification of different pressures 

in the injector. Table 5 shows the confusion matrix 

for the last classifier. 

 
Table 5. Confusion matrix for pressure classifier 

  Classified 

  18 MPa 20 MPa 22 MPa 

Labeled 

18 MPa 255 25 11 

20 MPa 11 245 4 

22 MPa 10 8 241 
 

Changes in pressure create differences in 

combustion, which in turn are reflected in engine 

vibrations. These dynamic changes have a direct 

impact on the ability of the proposed methodology 

to reveal relevant characteristics through MPE, 

which in turn leads to a high success rate in the 

classification of different pressures. 

 

4. CONCLUSION 

 

This article presents a methodology for the 

diagnosis of bearing failures and classification of 

ICE states based on the Multiscale Permutation 

Entropy (MPE) technique. The MPE proves to be a 

highly effective characterization methodology to 

find information that allows to separate between 

classes. Specifically, in the mechanical vibration 

signals that have a high non-stationary behavior, the 

MPE manages to find characteristics that would not 

be detected by other methodologies. The MPE 

measures the non-linear dynamics existing in non-

stationary time series and when combined with 

VRA as a feature selection technique, a robust tool 

for classification applications is obtained. For the 

classification, a method of K-Nearest Neighbors 

(KNN) was used, which manages to adapt to the 

nature of the characteristics. To validate the 

methodology, two different experiments were 

implemented; the first one identifies faults in 

bearing systems in signals of a free database which 

is widely used in the literature, confirming the 

superiority of the methodology. The results report a 

precision of more than 99.72% with a computation 

time of 16.37 seconds, which is comparable with 

the results presented in the literature. The second 

experiment classifies states of a monocylinder ICE 

with different working conditions. The results 

confirm 93.82% for the identification of the speed, 

89.51% for the classification of the load state and 

91.37% for the identification of the pressure in the 

injector. 
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